USN

Fourth Semester B.E. Degree Examination, Dec.2013/Jan.2014 **Applied Thermodynamics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of thermodynamics data handbook permitted.

PART – A

- Explain the following: i) Air fuel ratio
- ii) Enthalphy of formation.
- iii) Combustion efficiency.

(06 Marks)

- With a neat sketch, explain the analysis of exhaust gases by Orsat apparatus. (08 Marks)
- c. A produce has used as a fuel has the following volumetric composition: $H_2 = 28\%$, $CH_4 = 2\%$, $CO_2 = 16\%$, $N_2 = 42\%$ Find the volume of air required for complete combustion of 1 m³ of this gas. Air contains 21% by volume of oxygen.
- With a help of P-V and T-S diagram of the air standard duel combustion cycle. Derive the 2 expression for the ideal efficiency.
 - The stroke and cylinder diameter of a compression ignition engine are 250 mm and 150 mm respectively. If the clearance volume is 0.0004 m³ and fuel injection takes place at constant pressure for 5 percent of the stroke Determine the efficiency of the engine. Note the engine (10 Marks) is working on the diesel cycle.
- Explain any one method employed for improvement of thermal efficiency of open cycle gas 3 turbine plant.
 - State the fundamental difference between the jet propulsion and rocket propulsion. (04 Marks) b.
 - c. In a gas turbine the compressor takes in air at a temperature of 15°C and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air is then passed through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to air. The maximum temperature after constant pressure combustion is 600°C and the officiency of the turbine is 70%. The working fluid have the characteristics of air. Neglect all losses except those mentioned. Find the efficiency of the cycle. Take $R = 0.287 \frac{KJ}{kgK}$ and $\gamma = 1.4$. (08 Marks)

Derive an expression for modified Rankine cycle with P-V and T-S diagram. (08 Marks) a. (02 Marks) Comment Carnot cycle cannot be used practically. b.

A turbine is supplied with steam at a pressure of 32 bar and a temperature of 410°C. The steam then expands isentropically to a pressure of 0.08 bar. Find the dryness fraction of the end of expansion and thermal efficiency of the cycle. If the steam is reheated at 5.5 bar to a temperature of 395°C and then expands isentropically to a pressure of 0.08 bar. What will be (10 Marks) the dryness fraction and thermal efficiency of the cycle?

PART - B

In a two stage air compressor, prove that the work done is minimum with perfect 5 intercooling when $P_2 = \sqrt{P_1 P_3}$. (06 Marks)

- b. Define the following:
 - i) Volumetric efficiency.
 - ii) Isentropic efficiency.
 - iii) Mechanical efficiency.

(06 Marks)

A two stage air compressor operates at 200 rpm and delivers 2 m³/min at suction condition At suction the temperature and pressure are 27°C and 0.1 MPa respectively. The delivered at 5 MPa, the clearance of both L.P and H.P cylinder is 5%. Assuming perfect intercooling and a constant compression and expansion index of 1.25. Determine

i) Minimum power required.

ii) Volumetric efficiency of both L.P. and H.P. cylinders.

Take R = 0.287 KJ/kgK.

(08 Marks)

Define the following: i) COP.

ii) Ton of refrigeration.

(06 Marks) (06 Marks)

b. Explain the working principle of a vapour absorption refrigeration refrigeration.

c. An ammonia of plant operates between a condenser temperature of 30°C and an evaporator temperature of O.C. It produces 10 tons of ice per day from water at 30°C to ice at -5°C. Assume the state at the end of compression process as dry saturated. Determine,

i) Mass flow rate of refrigerant. ii) Capacity of refrigerant plant.

Take: Cp of water = 4186 J/kgK

Specific heat of ice = 194 J/kgK

L.T of fusion at 0° C for water = 335×10^{3} J/kg

Saturation data for ammonia (NH₃)

	$Temp = {}^{\circ}C$	Sat.Pr. KPa	SP = Volume, m ³ /kg		Enthalpy KJ/kgK		Entropy KJ/kgK	
7.000			V£ O	- Vg	hf	hg	Sf	Sg
4.50	30°	1169.49	0,001,68	0.1106	322.9	1467.9	1.2028	4.9805
-15° 236.48 0.007518 0.5092 112.35 1425.7 0.4544 5.545	-15°	236.48	0.002518	0.509	112.35	1425.7	0.4544	5.545

(08 Marks)

- a. Define the following with respect to air-water vapour mixture:
 - i) Specific humidity
- ii) Wet bulb temperature
- iii) Relative humidity
- iv) Adiabatic saturation temperature v) Dew point temperature.

- b. Air at 30°C, 60% RH, 0.8808 m³/kg specific volume, 71.2 KJ/kg enthalpy, flows over a cooling coil at 250 m³/min. From the chart the corresponding dew point is 21.5°C. After flowing over the coil the temperature reduces to 23°C; with 64.2 KI/kg enthalpy:
 - i) Sketch the process on a psychrometric chart.
 - ii) The refrigeration capacity of the coil in tons.

(10 Marks)

- a. Explain how Morse test will help you in finding the indicated power of the nighti-cylinder
 - b. The following observations were recorded in a test of one hour duration on a single cylinder oil engine working on four stroke cycle:

Bore = 300 mm,

Stroke = 450 mm,

Average speed = 200 rpm.

m.e.p = 5.8 bar

Mass of fuel (used) = 8.8 kg,

Calorific value of fuel = 41800 KJ/kg,

Brake friction load = 1860 NQuality of cooling water = 650 kg, Temperature rise = 22°C

Diameter of brake wheel = 1.22 m

Determine: i) Brake thermal efficiency

ii) Mechanical efficiency.

Draw the heat balance sheet. (12 Marks)